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Abstract

The detection of fake news often requires sophisticated rea-
soning skills, such as logically combining information by
considering word-level subtle clues. In this paper, we move
towards fine-grained reasoning for fake news detection by
better reflecting the logical processes of human thinking and
enabling the modeling of subtle clues. In particular, we pro-
pose a fine-grained reasoning framework by following the
human’s information-processing model, introduce a mutual-
reinforcement-based method for incorporating human knowl-
edge about which evidence is more important, and design a
prior-aware bi-channel kernel graph network to model sub-
tle differences between pieces of evidence. Extensive experi-
ments show that our model outperforms the state-of-art meth-
ods and demonstrate the explainability of our approach.

Introduction
The emergence of social media has transformed the way
users exchange information online. People are no longer
mere reviewers of information, but content creators and mes-
sage spreaders. Consequently, it has become much easier for
fake news to spread on the Internet. Since fake news can ob-
scure the truth, undermine people’s belief, and cause seri-
ous social impact (Brewer, Young, and Morreale 2013), de-
tecting fake news has become increasingly important for a
healthy and clean network environment (Shu et al. 2017).

Recently, neural models have been proposed to detect fake
news in a data-driven manner (Pan et al. 2018; Dun et al.
2021). These works have shown the promise in leveraging
big data for fake news detection. However, works that ap-
proach the task from the perspective of reasoning are still
lacking. According to the literature on psychology, reason-
ing is the capability of consciously applying logic for truth
seeking (Honderich 2005), and is typically considered as
a distinguishing capacity of humans (Mercier and Sperber
2017). We observe that such ability is essential to improve
the explainability and accuracy for fake news detection:

Explainability. Most existing works on fake news detec-
tion either do not provide explanations or enable explainabil-
ity for a small part of the model (e.g., the attention layer).
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The link is at the end of the article, I have 
seen this one before and they were dead 
before Clinton bought the property!

Evidence is in the barrels and 2 people own 
that property are Hillary and Mr. Clinton. 
Arrest them. No excuses. Damn u.

Disappeared from Arkansas. Found on their 
property. Nothing to do with them?

I knew Hillary was hiding those 
bodies somewhere. Go to hell!

I knew it. The Clintons persecuted 
my family ... nobody believed me. 
Now they will!

Breaking: Barrels Removed From Clinton Property 

Contained Parts From 3 Missing Women

Three women who all went missing in the mid-1970s have turned up, at least parts of them, in 

a steel industrial 55-gallon drum buried on the Clinton estate in Chappaqua, New York. ...

Evidence group 1: imply TRUE news Evidence group 2: imply TRUE news

Evidence group 3: imply FAKE news Evidence group 4: imply FAKE news

I guess the site is based on satire

Claimed to be satire. To give the 
fist-shakers a reason to hate.
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Figure 1: A motivating example of fine-grained reasoning
for fake news detection.
The major part of the model (e.g. the overall workflow) re-
mains obscure to humans. This prevents humans to better
understand and trust the model, or steer the model for per-
formance refinement.

Accuracy. When humans reason about the authenticity of
a news article, they have the ability to perform fine-grained
analysis for identifying subtle (e.g., word-level) clues, and
can connect different types of clues (e.g., textual and social)
to draw conclusions. An example is shown in Fig. 1. Al-
though the four groups of evidence are semantically dissim-
ilar, humans can logically connect them in terms of subtle
clues such as the word “property”, which leads to a much
more confident conclusion about the article. For example,
reasoning in terms of “property” reveals that the accusation
of finding bodies in Clintons’ property (evidence group 1)
might be false, since the women were dead before the Clin-
tons bought the property (evidence group 3). Reasoning with
respect to “hate” suggests that users in groups 1 and 2 might
post false messages because they hate the Clintons. The
overlap between users in groups 1 and 2 further strength-
ens this suggestion. Existing methods lack such capability
of fine-grained reasoning: they either do not model the inter-
actions between different types of evidence or model them
at a coarse-grained (e.g., sentence or post) level.

We aim to move towards using deep reasoning for fake
news detection. The goal is to improve accuracy and ex-
plainability by 1) better reflecting the logical processes of
human thinking and 2) enabling fine-grained modeling of
subtle clues. In particular, we study three research questions:
• RQ1. Can the model be designed by following the hu-
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Figure 2: Our proposed FinerFact framework for fake news detection.

man’s information-processing model (Lang 2000)?
• RQ2. Can human knowledge about which evidence (e.g.,

posts and users) is important be better incorporated?
• RQ3. How does one achieve fine-grained modeling of dif-

ferent types of subtle clues?
Specifically, we make the following contributions.
First, we design a Fine-grained reasoning framework

for Fake news detection (FinerFact) by following the hu-
man’s information-processing model (RQ1). This enables us
to detect fake news by better reflecting the logical processes
of human thinking, which enhances interpretability and pro-
vides the basis for incorporating human knowledge.

Second, we propose a mutual-reinforcement-based
method for evidence ranking, which enables us to better in-
corporate prior human knowledge about which types of evi-
dence are the most important (RQ2).

Finally, we design a prior-aware bi-channel kernel
graph network to achieve fine-grained reasoning by mod-
eling different types of subtle clues (RQ3). Our method im-
proves accuracy, and provides explanations about the subtle
clues identified, the most important claim-evidence groups,
and the individual prediction scores given by each group.

Methodology
Problem Definition
Input. The inputs of our model are threefold. Each training
sample consists of 1) a news article S to be verified; 2) a
collection of online posts P for the news and the comment-
ing/retweeting relationships between the posts; and 3) the
online users U that publish the posts P .
Output. The output of our model is the predicted label of
the news, which can be fake (y = 1) or real (y = 0).

Fine-Grained Reasoning Framework
We propose a Fine-grained reasoning framework for Fake
news detection (FinerFact) by following the human’s
information-processing model (Lang 2000). Our framework
consists of two major modules as shown in Fig. 2.

The first module, claim-evidence graph construction,
corresponds to the storage sub-process of the human’s
information-processing model, in which people select the
most important pieces of information and build their in-
between associations to store them in the memory. As of
fake news detection, it corresponds to the process in which

people search for key information such as the major view-
points, opinion leaders, and the most important posts, which
enables them to get an idea about the key claims and their as-
sociated evidence (e.g., supported posts and users). This step
is essential for filtering noise, organizing facts, and speed-
ing up the fine-grained reasoning process at the later stage.
It also enables us to incorporate human knowledge about
which information is important.

The second module, graph-based fine-grained reason-
ing, corresponds to the retrieval sub-process of the human’s
information-processing model, in which people reactivate
specific pieces of information based on their associations
for decision making. In fake news detection, this module en-
ables fine-grained modeling of evidential relations by con-
sidering subtle clues, such as the word “property”, “hate”,
and the overlapping user in Fig. 1.

By designing the framework based on the human’s
information-processing model, the overall workflow of our
method resembles the logical processes used by humans, and
most of the intermediate results are understandable by ordi-
nary users. This provides a good basis for users to trust the
model and steer it by integrating human knowledge.

Claim-Evidence Graph Construction
Our graph construction method contains two parts: 1)
mutual-reinforcement-based evidence ranking, which
distinguishes important evidence from noise by incorpo-
rating human knowledge (filtering noise); and 2) topic-
aware claim-evidence association, which follows journal-
ists’ knowledge about quality journalism (for Excellence in
Journalism 2005) to extract the key claims and associate
them with the corresponding evidence (organizing facts).

Mutual-Reinforcement-Based Evidence Ranking As a
news article propagates on the Internet, it leaves many
traces, e.g., posts about the news and users who support
the news, which can all be considered as evidence for ver-
ifying the news. Such evidence typically has a large scale,
and performing fine-grained reasoning by considering all
evidence is quite difficult, if not impossible, due to lim-
ited GPU memory. To efficiently and accurately identify the
most valuable evidence in an interpretable way, we propose
ranking the evidence by integrating human knowledge. The
human knowledge can be divided into two types based on
whether it considers the inherent attributes (Lampos et al.



2014) of the evidence or its topological (Pasquinelli 2009)
information. We observe that these two types of knowl-
edge can be integrated in one framework and computed effi-
ciently by using the mutual reinforcement mechanism (Duan
et al. 2012). Specifically, our mutual-reinforcement-based
evidence ranking consists of the following three steps.

Step 1: Attribute saliency computation. We compute the
attribute saliencyE based on the human knowledge summa-
rized from the current literature. In particular, the attribute
saliency eui for a user ui is computed by using the user im-
pact index (Lampos et al. 2014):

eui = ln
(

(φIi+θU )2(φLi +θU )

φOi +θU

)
(1)

where φIi , φOi , φLi are ui’s follower count, friend count, and
listed count, and θU is a smoothing constant added to ensure
that the minimum saliency score is always positive. The at-
tribute saliency epi of each post pi is computed based on
its number of retweets Ci, considering that retweets rarely
provide extra textual information and are usually regarded
as votes to the original post (Chang et al. 2013). Specifi-
cally, epi = ln(Ci + 1) + θP , where θP is a smoothing con-
stant. The attribute saliency eki of each keyword ki is set to
ln(freq(ki) + 1) + θK , where freq(ki) is the term frequency
of ki with respect to the news article and the posts, and θK
is a smoothing constant (Rousseau and Vazirgiannis 2013).

Step 2: Mutual reinforcement evidence graph building.
As shown in Fig. 2, we build the mutual reinforcement ev-
idence graph M so that it encodes both the relations within
posts, users, or keywords, and the relations between them to
enable the effective modeling of topological saliency. Math-
ematically, M = {Axy|x, y ∈ {P,U,K}} is a three-layer
graph, where subscript indices P , U , K denote posts, users,
and keywords, respectively, and Axy is an affinity matrix
that represents relations between items. We design the graph
based on two considerations: 1) M should effectively en-
code diverse types of social interactions and 2) edges in M
should reveal the mutual influence between items in terms
of saliency. For example, constructing edges between users
and their posts means that if a user is important, then his/her
posts are important, and vice versa. Such human knowledge
about which items should influence each other in terms of
saliency can be effectively incorporated into the edge design.
Based on these considerations, we construct M by using the
cosine similarity between the term frequency vectors of the
posts (APP ), the commenting relationships between users
(AUU ), the co-occurrence relationships between keywords
(AKK), the mentioning relationships that link a keyword
to all the posts and users that mention it (AKP , AKU ),
and the authoring relationships that link a user to all the
posts that s/he has published (AUP ). More details about the
construction of M are given in the supplement.

Step 3: Iterative saliency propagation. We then compute
the saliency R based on the mutual reinforcement mecha-
nism (Duan et al. 2012). In particular, we treat the attribute
saliency E as a prior and integrate it with the saliency prop-
agation process on M :

R(i+1) = dÃR(i) + (1− d)E (2)

Â =

[
βPPAPP βKPAKP βUPAUP
βPKAPK βKKAKK βUKAUK
βPUAPU βKUAKU βUUAUU

]
, R(i) =

R
(i)
P

R
(i)
K

R
(i)
U

 , E =

[
EP
EK
EU

]

where R(i) is the joint ranking score vector in the i-th itera-
tion, Ã is the normalized affinity matrix derived from Â, and
βxy is a balancing weight to adjust the interaction strength
among posts, keywords, and users.

Interpretability and efficiency. The designed method is
highly interpretable and steerable, since each type of
saliency can be easily explained to and controlled by hu-
man users. According to Eq. (2), a piece of evidence (e.g.,
a supported user) is important if it has a large attribute
saliency (e.g., has many followers) and is connected with
other salient evidence (e.g., writes a salient post). Other
types of human knowledge can also be easily integrated by
slightly modifying the equation. Our method is also effi-
cient. In practice, ranking 240,000 posts, users, and key-
words takes 620 seconds. Without evidence ranking, per-
forming fine-grained reasoning on the same data causes the
out of memory issue on NVIDIA Tesla V100.

Topic-Aware Claim-Evidence Association Given the
saliency scores R, a straightforward way for constructing
the claim-evidence graph is to select the pieces of evidence
with the largest saliency scores. However, this method may
easily obscure the truth by focusing only on one aspect of
the story. For example, the news article in Fig. 1 may be
dominated by posts related to evidence group 1, which are
posted deliberately by users who hate the Clintons. To dis-
close the truth, we need to observe all four evidence groups
closely. This echoes the journalists’ knowledge about quality
journalism (for Excellence in Journalism 2005), which states
that a high-quality news article should cover multiple view-
points to reveal two or more sides of the story. Motivated by
this insight, we propose a topic-aware method, which con-
sists of the following steps.

Step 1: Topic modeling. A typical solution to mine major
viewpoints in a text corpus is topic modeling. In the scenario
of fake news detection, the text corpus consists of each post
and news sentence. We then utilize LDA (Blei, Ng, and Jor-
dan 2003) to mine the topics, which summarizes the main
viewpoints and serve as a bridge between the claims in the
news sentences and the keywords in the evidence graph M :
• Each topic t is represented by a distribution of keywords
P(ki|t) in M . For each topic t, its top NK keywords Kt

are the ones that have the largest P(ki|t).
• Each news sentence si is represented by a distribution of

topics P(t|si). Given a topic t, we can extract its top NS
sentences St that have the largest P(t|stj).
Step 2: Key claim and evidence extraction. To extract the

key claims and their associated evidence based on the top-
ics, we first select the top NT topics with the maximum
aggregate saliency score rt =

∑
ki∈Kt P(ki|t)rki , where

Kt is the set of top keywords extracted in step 1, and rki is
the saliency score computed by using mutual-reinforcement-
based evidence ranking. The topics that are selected in this
way not only cover major viewpoints of the article, but are
also related with the most salient evidence in M .



For each selected topic t, its corresponding claims are the
top news sentences St extracted in step 1. The key evidence
consists of two parts. The first part is the key posts in t.
Given a set of posts that are connected to the keyword set
Kt, we normalize the saliency score of each post in the set
to obtain a probability distribution, and then sample a set
P t with NP posts according to the distribution. Similarly,
we sample a set U t with NU users that are relevant with t,
and treat U t as the second part of the evidence. Keywords
are not considered as evidence because they are less useful
for fine-grained reasoning when considered without the con-
text. To model keywords more effectively, we treat the posts
as ordered sequences of keywords in fine-grained reasoning.

Finally, we build a claim-evidence graph G as shown in
Fig. 2. In G, each node v is a tuple (t, St, P t, U t) that cor-
responds to a selected topic t, where St refers to the key
claims and P t, U t form an evidence group shown in Fig. 1.
Given all nodes V , a straightforward approach to construct
G is to build edges between two nodes if the percentage of
overlapping words is larger than a threshold (Zhong et al.
2019). However, this method may easily overlook important
subtle clues, because 1) it is difficult to find an appropri-
ate global threshold and 2) topics (or evidence groups) may
be connected logically with different words. For example,
evidence groups 1, 2, and 4 in Fig. 1 are connected with dif-
ferent words like “damn”, “hate”, and “hell”. Based on this
observation, we choose to build a fully connected graph and
let the fine-grained reasoning module to decide whether sub-
tle clues exist for a set of topics.

Fine-Grained Graph-based Reasoning
After constructing the claim-evidence graph G, we model
subtle clues and effectively leverage them for prediction
through fine-grained graph-based reasoning. Our method is
based on the Kernel Graph Attention Network (KGAT) (Liu
et al. 2020). We choose this method because it can ef-
fectively model subtle differences between statements and
propagate the learned information on the graph. However,
KGAT cannot be directly applied on our claim-evidence
graph, because it handles only textual inputs and cannot
integrate the learned saliency R, which incorporates hu-
man knowledge about which evidence is important. To solve
these issues, we propose a Prior-Aware Bi-Channel Ker-
nel Graph Attention Network that extends KGAT to 1) si-
multaneously model subtle clues from both textual (posts)
and social (users) inputs with two connected channels; and
2) integrating existing knowledge about important evidence
with attention priors. Mathematically, the final prediction
P(y|G,R) is obtained by combining individual node-level
predictions:

P(y | G,R) =
∑
v∈G

P(y | v,G)︸ ︷︷ ︸
Node label
prediction

P(v | G,R)︸ ︷︷ ︸
Node importance

learning

(3)

This formulation provides explainability for individual
prediction scores that each node (or claim-evidence group)
gives and importance of the nodes for the final prediction.
Specifically, our method contains two major parts:

• Node label prediction with bi-channel kernel match-
ing, which accurately computes P(y|v,G) by integrating
different types of subtle clues from the whole graph;

• Node importance learning with attention priors, which
effectively models P(v|G,R) by integrating the evidence
saliency R as attention priors.

Node Label Prediction with Bi-Channel Kernel Match-
ing Given a node v, we predict the individual label it gives
by aggregating subtle clues from the whole graph. To reason
about subtle clues that are provided by both the textual and
social (user) inputs, we design two interconnected channels.
We will first introduce how each channel is designed when
they are modeled independently, and then illustrate how the
channels can be fused for prediction.

Text-based reasoning channel. We first derive an initial
textual representation for node v = (t, St, P t, U t) by con-
catenating the claims in St and evidential posts in P t with
token “[SEP]”. The concatenated string is then encoded by
using BERT (Devlin et al. 2019):

[h0
v,h

1
v, ...h

Nv
v ] = BERT(St ⊕ P t), zv = h0

v (4)

where hiv denotes the BERT embedding for the i-th token.
zv , which corresponds to the embedding of the “[CLS]” to-
ken, is considered as the initial textual representation for v.

The fine-grained match features between nodes v and q
can then be extracted by constructing a token-level trans-
lation matrix Lq,v . In Lq,v , each entry li,jq,v = cos(hiq,h

j
v)

is the cosine similarity between their token representations.
For each token i in node q, we use Υ kernels to extract the
kernel match features between the token and its neighbor v:

Ψτ (Liq,v) = log
∑
j exp(− (li,jq,v−µτ )2

2σ2
τ

) (5)

~Ψ(Liq,v) = {Ψ1(Liq,v), . . . ,ΨΥ(Liq,v)} (6)

Each Ψτ is a Gaussian kernel that concentrates on the region
defined by the mean similarity µτ and the standard devia-
tion στ . The kernel match feature ~Ψ, which consists of Υ
kernels, summarizes how similar the i-th token in q is to all
tokens in v at different levels. Such soft-TF match features
have been shown effective for fact verification (Liu et al.
2020). In our framework, they help identify subtle clues by
comparing different claim-evidence groups (nodes). For ex-
ample, in Fig. 1, the match features can help identify “hate”
in group 4 (node q) by comparing it with all words in group
2 (node v). This neighbor-aware token selection is achieved
by computing an attention score based on ~Ψ:

αiq,v = softmaxi(W1
~Ψ(Liq,v) + b1) (7)

We can then compute the content to propagate from q to v:

ẑq,v =
∑
i α

i
q,vh

i
q (8)

Note that by setting στ to ∞, Eq. (8) degenerates to mean
pooling, which assigns an equal weight to all tokens.

Given ẑq,v that contains the information to be propagated
to v, we derive a final textual representation κv for v by at-
tentively aggregating ẑq,v from all q ∈ G:

κv = (
∑
q∈G γq,v · ẑq,v)⊕ zv (9)

γq,v = softmaxq(MLP(ẑq,v ⊕ zv)) (10)



The kernel-based textual representation κv aggregates
fine-grained, token-level subtle clues from the whole graph,
and can be used to reason about the authenticity of the news
from the perspective of node v. Next, we introduce how to
derive kernel-based user representations with a user channel,
and how these two channels can be fused for final prediction.

User-based reasoning channel. The initial user represen-
tation xv for node v = (t, St, P t, U t) is derived by applying
a graph neural network, APPNP (Klicpera, Bojchevski, and
Günnemann 2018), on the mutual reinforcement evidence
graph M . We choose APPNP because its efficient message-
passing scheme enables it to scale to large graphs with hun-
dreds of thousands of nodes. Specifically, for each user in
U t, we first obtain its feature embedding by using a look up
layer, which encodes the main user attributes including the
user’s follower count, friend count, listed count, favourite
count, status count, the number of words in the self descrip-
tion, as well as the account status about whether the user
is verified or geo-enabled. We then use the message pass-
ing scheme of APPNP to aggregate the feature embeddings
from the neighbor users in M . This results in an initial user
representation uiv for each user, and max pooling is used to
derive the initial user presentation xv for node v:

[u0
v, ...u

Ñv
v ] = APPNP(M), xv = maxpool(u0

v, ...u
Ñv
v ) (11)

We can then derive the kernel-based user representation κ̃v
by using a kernel attention mechanism similar with that in
the text-based reasoning channel:

ρiq,v = softmaxi(W2
~Ψ(L̃iq,v) + b2) (12)

x̂q,v =
∑
i ρ
i
q,vu

i
q (13)

λq,v = softmaxq(MLP(x̂q,v ⊕ xv)) (14)
κ̃v = (

∑
q λq,v · x̂q,v)⊕ xv (15)

where L̃q,v is a user-level translation matrix in which each
entry is a cosine similarity score between two initial user
representations. This formulation of κ̃v allows us to reason
about the final prediction by considering user-based subtle
clues, e.g., the overlap between users in Fig. 1.

Channel fusion. We fuse the channels to better inte-
grate information from the textual and social inputs. To
this end, we first refine the node-level attention scores by
aggregating the textual and user representations. Specifi-
cally, we replace γq,v and λq,v in Eqs. (10) and (14) with
softmaxq(MLP(ẑq,v ⊕ zv ⊕ x̂q,v ⊕ xv)). This allows us to
combine both textual and social clues when reasoning about
one node based on another node. For example, in Fig. 1, we
may consider both words related to “hate” and the overlap-
ping user when reasoning about evidence group 1 from the
perspective of evidence group 2.

We then fuse the kernel-based textual and user represen-
tations to predict the label that node v gives:

P(y | v,G) = sigmoidv(W5(κv) +W6(κ̃v) + b5) (16)

Node Importance Learning with Attention Priors To
better characterize the relative importance of each node
with regard to the predicted label, we learn the probability

P(v | G,R) by jointly consider its claims, evidence, and the
evidence saliency R:

P(v | G,R) = softmaxv∈G(ϕ(v) + δ(v,R) + b6) (17)

ϕ(v) = W7

[
averagei(~Ψ(L̂iSt,P t))

]
(18)

δ(v,R) = W8RP t +W9RUt +W10RKt (19)
where ϕ(v) is the node ranking feature learned by compar-
ing the claims with the evidence, and δ(v,R) is the attention
prior used to encode the previously learned saliency score
R, which embeds human knowledge about evidence signif-
icance. More specifically, ϕ(v) is derived by using the ker-
nel match feature ~Ψ(L̂iSt,P t), where L̂St,P t is a token-level
translation matrix that measures the cosine similarities be-
tween tokens in the claims St and tokens in the supported
posts P t. The attention prior δ(v,R) is learned by combin-
ing the saliency scores RP t , RUt , and RKt , which corre-
spond to the top posts, users, and keywords that are the most
relevant with the topic t of the node v. W8,W9,W10 are
non-negative weight vectors that enable us to re-weight each
piece of evidence during fine-grained reasoning.

Joint Optimization Let ‖Θ‖ be the L2 norm of all model
parameters. For each news article S, we compute the loss
LS = −y∗ log (p̂)+(1−y∗) log (1− p̂)+λreg‖Θ‖2 (20)

where y∗ is its the ground-truth label, p̂ = P(y|G,R) is the
probability learned based on Eq. (3), and λreg is the reg-
ularization coefficient. The parameters are then optimized
jointly by minimizing

∑
S∈N LS , where N consists of all

the news articles in the training set.

Experiment
Experimental Setup
Dataset To evaluate the performance of FinerFact, we
conduct experiments on two benchmark datasets, PolitiFact
and GossipCop (Shu et al. 2020), which contain 815 and
7,612 news articles, and the social context information about
the news, their labels provided by journalists and domain ex-
perts. We follow (Dun et al. 2021) to preprocess the data and
conduct experiments. More details about dataset and the pre-
processing steps are given in the supplement.

Baselines We compare our FinerFact method with eight
baselines, which can be divided into two groups:

The first group (G1) is content-based methods, which
leverage the textual or visual content of the news for fake
news detection. G1 contains four baselines: SVM (Yang
et al. 2012), GRU-2 (Ma et al. 2016), RFC (Kwon et al.
2013), and DTC (Castillo, Mendoza, and Poblete 2011).

The second group (G2) consists of knowledge-aware
methods that detect fake news by leveraging auxiliary
knowledge such as knowledge graphs and social knowledge
about the online posts. This group includes four methods:
B-TransE (Pan et al. 2018), KCNN (Wang et al. 2018a),
GCAN (Lu and Li 2020) and KAN (Dun et al. 2021).

Evaluation Criteria Our evaluation criteria include Preci-
sion (Pre), Recall (Rec), the F1 score, Accuracy (Acc), and
Area Under the ROC curve (AUC). We conduct 5-fold cross
validation and the average performance is reported.



PolitiFact GossipCop
Pre Rec F1 Acc AUC Pre Rec F1 Acc AUC

SVM 0.7460 0.6826 0.6466 0.6694 0.6826 0.7493 0.6254 0.5955 0.6643 0.6253
G1 RFC 0.7470 0.7361 0.7362 0.7406 0.8074 0.7015 0.6707 0.6691 0.6918 0.7389

DTC 0.7476 0.7454 0.7450 0.7486 0.7454 0.6921 0.6922 0.6919 0.6959 0.6929
GRU-2 0.7083 0.7048 0.7041 0.7109 0.7896 0.7176 0.7079 0.7079 0.718 0.7516

B-TransE 0.7739 0.7658 0.7641 0.7694 0.8340 0.7369 0.7330 0.7340 0.7394 0.7995
G2 KCNN 0.7852 0.7824 0.7804 0.7827 0.8488 0.7483 0.7422 0.7433 0.7491 0.8125

GCAN 0.7945 0.8417 0.8345 0.8083 0.7992 0.7506 0.7574 0.7709 0.7439 0.8031
KAN 0.8687 0.8499 0.8539 0.8586 0.9197 0.7764 0.7696 0.7713 0.7766 0.8435

Ours FinerFact 0.9196 0.9037 0.9172 0.9092 0.9384 0.8615 0.8779 0.8685 0.8320 0.8637
Impv. +5.1% +5.4% +6.3% +5.1% +1.9% +8.5% +10.8% +9.7% +5.5% +2.0%

Table 1: Performance comparison of FinerFact w.r.t. baselines. The best results are highlighted in bold.

Figure 3: Results of the ablation study.

Implementation Details The damping factor d for the
mutual reinforcement graph is set to 0.85 by following (Brin
and Page 1998). NK , NT , NS , NP , NU are set to 7, 5, 3,
6, 32 respectively. For fine-grained reasoning, we use the
Adam optimizer (Kingma and Ba 2014) with a learning rate
of 5e-5. If not mentioned specifically, 11 kernels are used
to extract multiple levels of interactions. A more compre-
hensive description about the implementation details and the
experimental setup can be found in the supplement.

Overall Performance
Table 1 compares our method FinerFact with the baselines.
As shown in the table, FinerFact consistently outperforms
the baseline in both datasets. For example, FinerFact per-
forms better than the most competitive baseline KAN by
6.3%, 5.1% on PolitiFact and 9.7%, 5.5% on GossipCop,
respectively, in terms of the F1-score and accuracy. This
demonstrates the effectiveness of our fine-grained reasoning
framework, which enables the model to make predictions by
identifying and connecting different types of subtle clues.
Meanwhile, comparing with GCAN, which models the inter-
actions between the textual content and social information
with co-attention, FinerFact increases F1 by 8.3%, 9.8%
on the two datasets. This implies that our kernel-attention-
based approach can better model the interactions between
news articles and evidence. We also observe that methods
that incorporate external knowledge (G2) generally perform
better than content-based methods (G1). This illustrates the
usefulness of external knowledge in fake news detection.

Ablation Study and Sensitivity Analysis
We conduct the ablation study by implementing five vari-
ants of our method: 1) FF-P removes the attention prior

Figure 4: Sensitivity analysis w.r.t. the number of kernels.

δ(v,R) when learning node importance; 2) FF-B eliminates
bi-channel reasoning by removing the user-based reason-
ing channel; 3) FF-K replaces the kernel-based represen-
tation learning with a GNN-based aggregation scheme, i.e.,
replacing ẑq,v and x̂q,v with zq and xq in Eqs. (9)(15); 4)
FF-I excludes node importance learning and and assigns an
equal weight to every node. 5) FF-M eliminates mutual-
reinforcement-based evidence ranking, and selects the ev-
idence for each topic t by random sampling. The ablation
study results in Fig. 3 show that removing each component
leads to a decrease in model performance, which demon-
strates the effectiveness of our major components.

We then conduct a sensitivity analysis of FinerFact by
changing the number of kernels τ . Fig. 4 shows that Finer-
Fact consistently outperforms the state-of-art baseline KAN
with varying numbers of kernels, which demonstrates the ro-
bustness of our method. In addition, the performance is the
best when using around 11 kernels. Using more kernels does
not necessarily lead to better performance due to overfitting.

Case Study
In addition to improving accuracy, our method also enables
humans to understand most parts in the reasoning work-
flow. In this case study, we illustrate how FinerFact reasons
about the authenticity of a news story, which is about FBI
lawyer Lisa Page disclosing that she was instructed to cover-
up China’s hacks of the DNC server. FinerFact successfully
identifies that the news is fake, with a detailed explanation
about the salient evidence, subtle clues, and the prediction
scores for each viewpoint.

Identifying salient evidence. As shown in Fig. 5(a), Fin-
erFact identifies meaningful and relevant keywords that be-
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Figure 5: Reasoning with FinerFact: (a) the keyword layer of the mutual reinforcement graph M , with saliency R indicated by
the font size; (b) fine-grained reasoning over the claim-evidence graph G. Each color encodes a topic.

long to diverse topics. For each topic t, we can further un-
derstand its key evidence by observing its salient posts P t
and average user saliency r̄Ut . As shown in Fig. 5(b), users
of topic 1 support the news because of their political stance
(consider China as a threat) and are generally not credible
opinion leaders (small r̄Ut ). In contrast, users of topic 4, who
question that the news is fake with more objective reasons,
e.g., it is unlikely that an outsider lawyer knows about the
server hack (Fig. 5A), receive more attention (larger r̄Ut ).

Reasoning with subtle clues. The token-level and user-
level attention scores αiq,v and ρiq,v reveal the subtle clues
FinerFact detects. For example, in topic 2, the words with
the largest αi2,1 and αi2,4 are “china” and “conspiracy”.
These clues are meaningful and interesting: the statement
about “china” being unlikely to collaborate with FBI in topic
2 decreases the credibility of the posts in topic 1, and re-
lating “conspiracy” with topic 4 (about “hacking”) enables
us to understand that the news may be fake because such a
hacking conspiracy is likely to be made up by people who
like to talk about it (Fig. 5B). Topics 1 and 4 are also related:
user 2, who has the largest ρi4,1, questions users in topic 1 by
commenting on them, and points out that China’s problem
in terms of intellectual property does not mean that Chinese
will hack the server (Fig. 5C).

Prediction for each viewpoint. Based on the subtle clues,
FinerFact makes prediction for each node. Our method un-
derstands that evidence from groups 1 and 3 imply that
the news is true (P(y = 0|v,G) > 0.5) and that the ev-
idence from groups 2 and 4 imply that the news is fake
(P(y = 0|v,G) < 0.5). It assigns a low probability score
that is close to 0.5 to group 1 by propagating the informa-
tion from groups 2 and 4 to group 1 (large γq,v). It also as-
signs a small node importance P(v|G,R) to group 1. This
is reasonable, since group 1 has a low user saliency r̄Ut ,
which can be modeled by using the attention prior. While
the users in group 3 are considered salient according to the
mutual reinforcement graph, we find that they are not talking
about whether the article is true, but are instead drifting to-
wards criticizing Hillary. Our model successfully identifies
this and assigns a low node importance to topic 3.

Steering the model. FinerFact also provides opportuni-
ties for users to steer and refine the model. For example, we
may integrate FinerFact with the method proposed by Liu

et al. (2015) to enable interactive refinement of evidence
ranking. Please refer to the supplement for more details.

Related Works
Methods for fake news detection can be divided into two
main categories: content-based and knowledge-aware.

Content-based methods mainly utilize the textual or vi-
sual content from the news article and related posts for news
verification (Yang et al. 2012; Afroz, Brennan, and Green-
stadt 2012; Kwon et al. 2013; Przybyla 2020; Ma et al. 2016;
Zellers et al. 2019; Qi et al. 2019; Gupta et al. 2013; Jin et al.
2016b). These methods enable the detection of fake news at
an early stage. However, their performance is limited as they
ignore auxiliary knowledge for news verification.

Knowledge-aware methods leverage auxiliary knowl-
edge for news verification (Ruchansky, Seo, and Liu 2017;
Wang et al. 2018b; Shu et al. 2019; Jin et al. 2016a; Ma, Gao,
and Wong 2018; Cho et al. 2014; Wang et al. 2018a). These
methods typically utilize external knowledge about entity
relationships (Dun et al. 2021; Pan et al. 2018; Silva et al.
2021) or social knowledge about online posts (Lu and Li
2020) for fake news detection. While existing methods have
demonstrated the usefulness of social and external knowl-
edge in fake news detection, they either do not model the
interactions between the news content and different types
of knowledge data, or model them at a coarse-grained (e.g.,
sentence or post) level, which limits their performance. We
tackle this issue by proposing a prior-aware bi-channel ker-
nel graph network, which enables fine-grained reasoning
and improves detection accuracy.

Conclusion
In this paper, we propose FinerFact, a fine-grained reasoning
framework for explainable fake news detection. We devise
a mutual-reinforcement-based method for efficient evidence
ranking and a prior-aware bi-channel kernel graph network
for fine-grained reasoning on multiple groups of evidence.
Experimental results show that our model outperforms state-
of-the-art methods, and provides detailed explanations about
which evidence is critical for news verification.
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